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Combinational vs. Sequential Logic

Combinational Sequential

Output = f(In) Output = f(In, Previous In)

Combinational
Logic
Circuit

OutIn
Combinational

Logic
Circuit

OutIn

State
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Static CMOS Circuit

At every point in time (except during the switching 
transients) each gate output is connected to either
VDD or Vss via a low-resistive path. 

The outputs of the gates assume at all times the value 
of the Boolean function, implemented by the circuit 
(ignoring, once again, the transient effects during 
switching periods). 

This is in contrast to the dynamic circuit class, which 
relies on temporary storage of signal values on the 
capacitance of high impedance circuit nodes. 
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Static Complementary CMOS
VDD

F(In1,In2,…InN)

In1
In2

InN

In1
In2
InN

PUN

PDN

PMOS only

NMOS only

PUN and PDN are dual logic networks
…

…
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NMOS Transistors 
in Series/Parallel Connection

Transistors can be thought as a switch controlled by its gate signal

NMOS switch closes when switch control input is high

X Y

A B

Y = X if A and B

X Y

A

B Y = X if A OR B

NMOS Transistors pass a “strong” 0 but a “weak” 1
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PMOS Transistors 
in Series/Parallel Connection

X Y

A B

Y = X if A AND B = A + B

X Y

A

B Y = X if A OR B = AB

PMOS Transistors pass a “strong” 1 but a “weak” 0

PMOS switch closes when switch control input is low
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Threshold Drops
VDD

VDD → 0PDN

0 → VDD

CL

CL

PUN

VDD

0 → VDD - VTn

CL

VDD

VDD

VDD → |VTp|

CL

S

D S

D

VGS

S

SD

D

VGS
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Complementary CMOS Logic Style
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Example Gate: NAND
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Example Gate: NOR
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Complex CMOS Gate

OUT = D + A • (B + C)

D
A

B C

D

A
B

C



EE141
12

© Digital Integrated Circuits2nd Combinational Circuits

Constructing a Complex Gate

C

(a) pull-down network

SN1 SN4

SN2

SN3D

F
F

A

DB

C

D

F

A

B

C

(b) Deriving the pull-up network
hierarchically by identifying
sub-nets

D

A

A

B

C

VDD VDD

B

(c) complete gate
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Cell Design

Standard Cells
General purpose logic
Can be synthesized
Same height, varying width

Datapath Cells
For regular, structured designs (arithmetic)
Includes some wiring in the cell
Fixed height and width
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Standard Cell Layout Methodology –
1980s

signals

Routing
channel

VDD

GND
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Standard Cell Layout Methodology –
1990s

M2

No Routing
channels VDD

GNDM3

VDD

GND

Mirrored Cell

Mirrored Cell
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Standard Cells

Cell boundary

N Well
Cell height 12 metal tracks
Metal track is approx. 3λ + 3λ
Pitch = 
repetitive distance between objects

Cell height is “12 pitch”

2λ

Rails ~10λ

In
Out

VDD

GND
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Standard Cells

In
Out

VDD

GND

In Out

VDD

GND

With silicided 
diffusion

With minimal
diffusion
routing

OutIn

VDD

M2

M1
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Standard Cells

A

Out

VDD

GND

B

2-input NAND gate

B

VDD

A
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Stick Diagrams

Contains no dimensions
Represents relative positions of transistors

In

Out

VDD

GND

Inverter

A

Out

VDD

GND
B

NAND2
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Stick Diagrams

C

A B

X = C • (A + B)

B

A
C

i

j

j

VDDX

X

i

GND

AB

C

PUN

PDN
A
B
C

Logic Graph
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Two Versions of C • (A + B)

X

CA B A B C

X

VDD

GND

VDD

GND
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Consistent Euler Path

j

VDDX

X

i

GND

AB

C

A B C
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OAI22 Logic Graph

C

A B

X = (A+B)•(C+D)

B

A

D

VDDX

X

GND

AB

C

PUN

PDN

C

D

D

A
B
C
D
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Example: x = ab+cd

GND

x

a

b c

d

VDDx

GND

x

a

b c

d

VDDx

(a) Logic graphs for (ab+cd) (b) Euler Paths {a b c d}

a c d

x

VDD

GND

(c) stick diagram for ordering {a b c d}
b
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Multi-Fingered Transistors
One finger Two fingers (folded)

Less diffusion capacitance
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Properties of Complementary CMOS Gates 
Snapshot

High noise margins: 
VOH and VOL are at VDD and GND, respectively. 

No static power consumption:
There never exists a direct path between VDD and 
VSS (GND) in steady-state mode. 

Comparable rise and fall times:
(under appropriate sizing conditions) 
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CMOS Properties
Full rail-to-rail swing; high noise margins
Logic levels not dependent upon the relative 
device sizes; ratioless
Always a path to Vdd or Gnd in steady state; 
low output impedance
Extremely high input resistance; nearly zero 
steady-state input current
No direct path steady state between power 
and ground; no static power dissipation
Propagation delay function of load 
capacitance and resistance of transistors
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Switch Delay Model

A

Req

A

Rp

A

Rp

A

Rn CL

A

CL

B

Rn

A

Rp

B

Rp

A

Rn Cint

B

Rp

A

Rp

A

Rn

B

Rn CL

Cint

NAND2 INV NOR2
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Input Pattern Effects on Delay

Delay is dependent on 
the pattern of inputs
Low to high transition

both inputs go low
– delay is 0.69 Rp/2 CL

one input goes low
– delay is 0.69 Rp CL

High to low transition
both inputs go high

– delay is 0.69 2Rn CL

CL

B

Rn

A
Rp

B
Rp

A

Rn Cint
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Delay Dependence on Input Patterns

-0.5

0

0.5

1

1.5

2

2.5

3

0 100 200 300 400

A=B=1→0

A=1, B=1→0

A=1 →0, B=1

time [ps]

Vo
lta

ge
 [V

]

81A= 1→0, B=1

80A=1, B=1→0

45A=B=1→0

61A= 0→1, B=1

64A=1, B=0→1

67A=B=0→1

Delay
(psec)

Input Data
Pattern

NMOS = 0.5µm/0.25 µm
PMOS = 0.75µm/0.25 µm
CL = 100 fF
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Transistor Sizing

CL

B

Rn

A

Rp

B

Rp

A

Rn Cint

B

Rp

A

Rp

A

Rn

B

Rn CL

Cint

2

2

2 2

1
1

4

4
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Transistor Sizing a Complex 
CMOS Gate

OUT = D + A • (B + C)

D
A

B C

D

A
B

C

1

2

2 2

4

4
8

8

6

3
6

6
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Fan-In Considerations

DCBA

D

C

B

A CL

C3

C2

C1

Distributed RC model
(Elmore delay)

tpHL = 0.69 Reqn(C1+2C2+3C3+4CL)

Propagation delay deteriorates 
rapidly as a function of fan-in –
quadratically in the worst case.



EE141
34

© Digital Integrated Circuits2nd Combinational Circuits

tp as a Function of Fan-In

tpLH

t p
(p

se
c)

fan-in

Gates with a 
fan-in 
greater than 
4 should be 
avoided.

0

250

500

750

1000

1250

2 4 6 8 10 12 14 16

tpHL

quadratic

linear

tp
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tp as a Function of Fan-Out

2 4 6 8 10 12 14 16

tpNOR2

t p
(p

se
c)

eff. fan-out

All gates 
have the 
same drive 
current.

tpNAND2

tpINV

Slope is a 
function of 
“driving 
strength”
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tp as a Function of Fan-In and Fan-Out

Fan-in: quadratic due to increasing 
resistance and capacitance
Fan-out: each additional fan-out gate 
adds two gate capacitances to CL

tp = a1FI + a2FI2 + a3FO
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Fast Complex Gates:
Design Technique 1

Transistor sizing
as long as fan-out capacitance dominates

Progressive sizing

InN CL

C3

C2

C1
In1

In2

In3

M1

M2

M3

MN
Distributed RC line

M1 > M2 > M3 > … > MN
(the fet closest to the
output is the smallest)

Can reduce delay by more than 
20%; decreasing gains as 
technology shrinks
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Fast Complex Gates:
Design Technique 2

Transistor ordering

C2

C1
In1

In2

In3

M1

M2

M3 CL

C2

C1
In3

In2

In1

M1

M2

M3 CL

critical path critical path

charged1

0→1
charged

charged1

delay determined by time to 
discharge CL, C1 and C2

delay determined by time to 
discharge CL

1

1

0→1 charged

discharged

discharged
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Fast Complex Gates:
Design Technique 3
Alternative logic structures

F = ABCDEFGH
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Fast Complex Gates:
Design Technique 4

Isolating fan-in from fan-out using buffer 
insertion

CL
CL
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Fast Complex Gates:
Design Technique 5

Reducing the voltage swing

linear reduction in delay
also reduces power consumption

But the following gate is much slower!
Or requires use of “sense amplifiers” on the 
receiving end to restore the signal level 
(memory design)

tpHL = 0.69 (3/4 (CL VDD)/ IDSATn )

= 0.69 (3/4 (CL Vswing)/ IDSATn )
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Sizing Logic Paths for Speed

Frequently, input capacitance of a logic path 
is constrained
Logic also has to drive some capacitance
Example: ALU load in an Intel’s 
microprocessor is 0.5pF
How do we size the ALU datapath to achieve 
maximum speed?
We have already solved this for the inverter 
chain – can we generalize it for any type of 
logic?
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Buffer Example

( )∑
=

⋅+=
N

i
iii fgpDelay

1

For given N: Ci+1/Ci = Ci/Ci-1
To find N: Ci+1/Ci ~ 4
How to generalize this to any logic path?

CL

In Out

1 2 N

(in units of τinv)
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Logical Effort

( )fgp
C
CCRkDelay

in

L
unitunit

⋅+=









+⋅=

τ
γ

1

p – intrinsic delay (3kRunitCunitγ) - gate parameter ≠ f(W)
g – logical effort (kRunitCunit) – gate parameter ≠ f(W)
f – effective fanout

Normalize everything to an inverter:
ginv =1, pinv = 1

Divide everything by τinv
(everything is measured in unit delays τinv)
Assume  γ = 1.
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Delay in a Logic Gate

Gate delay:
d = h + p

effort delay intrinsic delay

Effort delay:
h = g f

logical 
effort

effective fanout  = 
Cout/Cin

Logical effort is a function of topology, independent of sizing
Effective fanout (electrical effort) is a function of load/gate size
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Logical Effort

Inverter has the smallest logical effort and 
intrinsic delay of all static CMOS gates
Logical effort of a gate presents the ratio of its 
input capacitance to the inverter capacitance 
when sized to deliver the same current
Logical effort increases with the gate 
complexity
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Logical Effort
Logical effort is the ratio of input capacitance of a gate to the input
capacitance of an inverter with the same output current

g = 1 g = 4/3 g = 5/3

B

A

A B

F

VDDVDD

A B

A

B

F

VDD

A

A

F

1

2 2 2

2

2
1 1

4

4

Inverter 2-input NAND 2-input NOR
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Logical Effort of Gates

Fan-out (h)

N
or

m
al

iz
ed

 d
el

ay
 (d

)

t

1 2 3 4 5 6 7 

pINV
tpNAND

F(Fan-in)

g =
p =
d =

g =
p =
d =
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Logical Effort of Gates

Fan-out (h)

N
or

m
al

iz
ed

 d
el

ay
 (d

)

t

1 2 3 4 5 6 7 

pINV
tpNAND

F(Fan-in)

g = 1
p = 1
d = h+1

g = 4/3
p = 2
d = (4/3)h+2
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Logical Effort of Gates

Intrinsic�
Delay

Effort
Delay

1 2 3 4 5
Fanout f

1

2

3

4

5

Invert
er:

g = 1; p = 1
2-i

np
ut 

NAND: g
 = 4/

3;
p =

 2

N
or

m
al

iz
ed

 D
el

ay
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Add Branching Effort

Branching effort: 

pathon

pathoffpathon
C

CC
b

−

−− +
=
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Multistage Networks

Stage effort: hi = gifi
Path electrical effort: F = Cout/Cin

Path logical effort: G = g1g2…gN

Branching effort: B = b1b2…bN

Path effort: H = GFB

Path delay D = Σdi = Σpi + Σhi

( )∑
=

⋅+=
N

i
iii fgpDelay

1
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Optimum Effort per Stage

HhN =

When each stage bears the same effort:

N Hh =

( ) PNHpfgD N
iii +=+= ∑ /1ˆ

Minimum path delay

Effective fanout of each stage: ii ghf =

Stage efforts: g1f1 = g2f2 = …  = gNfN
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Optimal Number of Stages
For a given load, 
and given input capacitance of the first gate
Find optimal number of stages and optimal sizing

inv
N NpNHD += /1

( ) 0ln /1/1/1 =++−=
∂
∂

inv
NNN pHHH

N
D

NHh ˆ/1=Substitute ‘best stage effort’
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Logical Effort

From Sutherland, Sproull
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Example: Optimize Path

Effective fanout, F =
G = 
H =
h =
a =
b =  

1
a

b c

5

g = 1
f = a

g = 5/3
f = b/a

g = 5/3
f = c/b

g = 1
f = 5/c
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Example: Optimize Path
1

a
b c

5

g = 1
f = a

g = 5/3
f = b/a

g = 5/3
f = c/b

g = 1
f = 5/c

Effective fanout, F = 5
G = 25/9
H = 125/9 = 13.9
h = 1.93
a = 1.93
b = ha/g2 = 2.23
c = hb/g3 = 5g4/f = 2.59
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Example: Optimize Path

 1 
a 

b c 
5 

Effective fanout, H = 5
G = 25/9
F = 125/9 = 13.9
f = 1.93
a = 1.93
b = fa/g2 = 2.23
c = fb/g3 = 5g4/f = 2.59

g1 = 1 g2 = 5/3 g3 = 5/3 g4 = 1
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Example – 8-input AND
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Method of Logical Effort

Compute the path effort: F = GBH
Find the best number of stages N ~ log4F
Compute the stage effort f = F1/N

Sketch the path with this number of stages
Work either from either end, find sizes: 
Cin = Cout*g/f

Reference: Sutherland, Sproull, Harris, “Logical Effort, Morgan-Kaufmann 1999.
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Summary

Sutherland,
Sproull
Harris
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Ratioed Logic
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Ratioed Logic

VDD

VSS

PDN
In1
In2
In3

F

RLLoad

VDD

VSS

In1
In2
In3

F

VDD

VSS

PDN
In1
In2
In3

F
VSS

PDN

Resistive Depletion
Load

PMOS
Load

(a) resistive load (b) depletion load NMOS (c) pseudo-NMOS

VT < 0

Goal: to reduce the number of devices over complementary CMOS
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Ratioed Logic
VDD

VSS

PDN
In1
In2
In3

F

RLLoad
Resistive

N transistors + Load

• VOH = VDD

• VOL = RPN

RPN + RL

• Assymetrical response

• Static power consumption

•

• tpL= 0.69 RLCL
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Active Loads
VDD

VSS

In1
In2
In3

F

VDD

VSS

PDN
In1
In2
In3

F

VSS

PDN

Depletion
Load

PMOS
Load

depletion load NMOS pseudo-NMOS

VT < 0
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Pseudo-NMOS

VDD

A B C D

F
CL

VOH = VDD (similar to complementary CMOS)

kn VDD VTn–( )VOL
VOL

2

2
-------------–

 
 
  kp

2
------ VDD VTp–( )

2
=

VOL VDD VT–( ) 1 1
kp
kn
------–– (assuming that VT VTn VTp )= = =

SMALLER AREA & LOAD BUT STATIC POWER DISSIPATION!!!
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Pseudo-NMOS VTC

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Vin [V]

V
ou

t
[V

]

W/Lp = 4

W/Lp = 2

W/Lp = 1

W/Lp = 0.25

W/Lp = 0.5
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Improved Loads

A B C D

F

CL

M1
M2 M1 >> M2Enable

VDD

Adaptive Load
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Improved Loads (2)
VDD

VSS

PDN1

Out

VDD

VSS

PDN2

Out

A
A
B
B

M1 M2

Differential Cascode Voltage Switch Logic (DCVSL)
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DCVSL Example

B

A A

B B B

Out

Out

XOR-NXOR gate



EE141
71

© Digital Integrated Circuits2nd Combinational Circuits

DCVSL Transient Response

0 0.2 0.4 0.6 0.8 1.0-0.5

0.5

1.5

2.5

Time [ns]

V
ol

ta
g e

[V
] A B

A B

A,B
A,B
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Pass-Transistor
Logic
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Pass-Transistor Logic
In

pu
ts Switch

Network

Out
Out

A

B

B

B

• N transistors
• No static consumption
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Example: AND Gate

B

B

A

F = AB

0
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NMOS-Only Logic

VDD

In

Out
x

0.5µm/0.25µm
0.5µm/0.25µm

1.5µm/0.25µm

0 0.5 1 1.5 20.0

1.0

2.0

3.0

Time [ns]

Vo
lt a

ge
[V

]

x
Out

In
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NMOS-only Switch

A = 2.5 V

B

C = 2.5V

CL

A = 2.5 V

C = 2.5 V

B
M2

M1

Mn

Threshold voltage loss causes
static power consumption

VB does not pull up to 2.5V, but 2.5V -VTN

NMOS has higher threshold than PMOS (body effect)
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NMOS Only Logic: 
Level Restoring Transistor

M2

M1

Mn

Mr

OutA

B

VDD
VDDLevel Restorer

X

• Advantage: Full Swing
• Restorer adds capacitance, takes away pull down current at X
• Ratio problem
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Restorer Sizing

0 100 200 300 400 500
0.0

1.0

2.0

W/Lr =1.0/0.25 W/Lr =1.25/0.25 

W/Lr =1.50/0.25 

W/Lr =1.75/0.25 

V
ol

t a
g e

[V
]

Time [ps]

3.0
•Upper limit on restorer size
•Pass-transistor pull-down
can have several transistors in 
stack
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Solution 2: Single Transistor Pass Gate with 
VT=0

Out

VDD

VDD

2.5V

VDD

0V 2.5V

0V

WATCH OUT FOR LEAKAGE CURRENTS 
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Complementary Pass Transistor Logic

A

B

A

B

B B B B

A

B

A

B

F=AB

F=AB

F=A+B

F=A+B

B B

A

A

A

A

F=A⊕ΒÝ

F=A⊕ΒÝ

OR/NOR EXOR/NEXORAND/NAND

F

F

Pass-Transistor
Network

Pass-Transistor
Network

A
A
B
B

A
A
B
B

Inverse

(a)

(b)
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Solution 3: Transmission Gate

A B

C

C

A B

C

C

B
CL

C = 0 V

A = 2.5 V

C = 2.5 V
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Resistance of Transmission Gate
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Pass-Transistor Based Multiplexer

A
M2

M1

B

S

S

S F

VDD

GND

VDD

In1 In2S S

S S
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Transmission Gate XOR

A

B

F

B

A

B

B
M1

M2

M3/M4
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Delay in Transmission Gate Networks

V1 Vi-1

C
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Delay Optimization
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Transmission Gate Full Adder

A

B

P

Ci

VDD
A

A A

VDD

Ci
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P

AB

VDD

VDD

Ci

Ci
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S

Ci

P

P

P

P

P

Sum Generation

Carry Generation

Setup

Similar delays for sum and carry
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Dynamic Logic
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Dynamic CMOS

In static circuits at every point in time (except 
when switching) the output is connected to 
either GND or VDD via a low resistance path.

fan-in of n requires 2n (n N-type + n P-type) 
devices

Dynamic circuits rely on the temporary 
storage of signal values on the capacitance of 
high impedance nodes.

requires on n + 2 (n+1 N-type + 1 P-type) 
transistors
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Dynamic Gate

In1

In2 PDN
In3

Me

Mp

Clk

Clk
Out

CL

Out

Clk

Clk

A

B
C

Mp

Me

Two phase operation
Precharge (CLK = 0)
Evaluate (CLK = 1)
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Dynamic Gate

In1

In2 PDN
In3

Me

Mp

Clk

Clk
Out

CL

Out

Clk

Clk

A

B
C

Mp

Me

Two phase operation
Precharge (Clk = 0)
Evaluate (Clk = 1)

on

off

1
off

on

((AB)+C)
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Conditions on Output

Once the output of a dynamic gate is 
discharged, it cannot be charged again until 
the next precharge operation.
Inputs to the gate can make at most one 
transition during evaluation.

Output can be in the high impedance state 
during and after evaluation (PDN off), state is 
stored on CL
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Properties of Dynamic Gates
Logic function is implemented by the PDN only

number of transistors is N + 2 (versus 2N for static complementary 
CMOS)

Full swing outputs (VOL = GND and VOH = VDD)
Non-ratioed - sizing of the devices does not affect 
the logic levels
Faster switching speeds

reduced load capacitance due to lower input capacitance (Cin)
reduced load capacitance due to smaller output loading (Cout)
no Isc, so all the current provided by PDN goes into discharging CL
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Properties of Dynamic Gates
Overall power dissipation usually higher than static 
CMOS

no static current path ever exists between VDD and GND 
(including Psc)
no glitching
higher transition probabilities
extra load on Clk

PDN starts to work as soon as the input signals 
exceed VTn, so VM, VIH and VIL equal to VTn

low noise margin (NML)
Needs a precharge/evaluate clock
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Issues in Dynamic Design 1: 
Charge Leakage

CL

Clk

Clk
Out

A

Mp

Me

Leakage sources

CLK

VOut

Precharge

Evaluate

Dominant component is subthreshold current
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Solution to Charge Leakage

CL

Clk

Clk

Me

Mp

A

B

Out

Mkp

Same approach as level restorer for pass-transistor logic

Keeper
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Issues in Dynamic Design 2: 
Charge Sharing

CL

Clk

Clk

CA

CB

B=0

A
Out

Mp

Me

Charge stored originally on 
CL is redistributed (shared) 
over CL and CA leading to 
reduced robustness
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Charge Sharing Example

CL=50fF

Clk

Clk

A A

B B B !B

CC

Out

Ca=15fF

Cc=15fF

Cb=15fF

Cd=10fF
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Charge Sharing

CLVDD CLVout t( ) Ca VDD VTn VX( )–( )+=

or

∆Vout Vout t( ) VDD–
Ca
CL
-------- VDD VTn VX( )–( )–= =

∆Vout VDD
Ca

Ca CL+
----------------------

 
 
 

–=

case 1) if ∆Vout < VTn

case 2) if ∆Vout > VTnB = 0

Clk

X

CL

Ca

Cb

A

Out

Mp

Ma

VDD

Mb

Clk Me
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Solution to Charge Redistribution

Clk

Clk

Me

Mp

A

B

Out
Mkp

Clk

Precharge internal nodes using a clock-driven transistor 
(at the cost of increased area and power)
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Issues in Dynamic Design 3: 
Backgate Coupling

CL1

Clk

Clk

B=0

A=0

Out1Mp

Me

Out2

CL2
In

Dynamic NAND Static NAND

=1 =0
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Backgate Coupling Effect
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Issues in Dynamic Design 4: Clock 
Feedthrough

CL

Clk

Clk

B

A
Out

Mp

Me

Coupling between Out and 
Clk input of the precharge
device due to the gate to 
drain capacitance.  So 
voltage of Out can rise 
above VDD.  The fast rising 
(and falling edges) of the 
clock couple to Out.
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Clock Feedthrough
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Other Effects

Capacitive coupling
Substrate coupling
Minority charge injection
Supply noise (ground bounce)
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Cascading Dynamic Gates

Clk

Clk

Out1
In

Mp

Me

Mp

Me

Clk

Clk

Out2

V

t

Clk

In

Out1

Out2 ∆V

VTn

Only 0 → 1 transitions allowed at inputs!
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Domino Logic

In1

In2 PDN
In3

Me

Mp

Clk

Clk Out1

In4 PDN
In5

Me

Mp

Clk

Clk
Out2

Mkp

1 → 1
1 → 0 0 → 0

0 → 1



EE141
108

© Digital Integrated Circuits2nd Combinational Circuits

Why Domino?

Clk

Clk

Ini PDN
Inj

Ini
Inj

PDN Ini PDN
Inj

Ini PDN
Inj

Like falling dominos!
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Properties of Domino Logic

Only non-inverting logic can be implemented
Very high speed

static inverter can be skewed, only L-H transition
Input capacitance reduced – smaller logical effort
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Designing with Domino Logic

Mp

Me

VDD

PDN

Clk

In1
In2

In3

Out1

Clk

Mp

Me

VDD

PDN

Clk

In4

Clk

Out2

Mr

VDD

Inputs = 0
during precharge

Can be eliminated!
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Footless Domino

The first gate in the chain needs a foot switch
Precharge is rippling – short-circuit current
A solution is to delay the clock for each stage

VDD

Clk Mp

Out1

In1

1     0

VDD

Clk Mp

Out2

In2

VDD

Clk Mp

Outn

InnIn3

1     0

0     1 0     1 0     1

1     0 1     0
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Differential (Dual Rail) Domino

A

B

Me

Mp

Clk

Clk
Out = AB

!A !B

Mkp
Clk

Out = AB
Mkp Mp

Solves the problem of non-inverting logic

1         0 1           0

onoff
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np-CMOS

In1

In2 PDN
In3

Me

Mp

Clk

Clk Out1

In4 PUN
In5

Me

MpClk

Clk

Out2
(to PDN)

1 → 1
1 → 0

0 → 0
0 → 1

Only 0 → 1 transitions allowed at inputs of PDN 
Only 1 → 0 transitions allowed at inputs of PUN
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NORA Logic

In1

In2 PDN
In3

Me

Mp

Clk

Clk Out1

In4 PUN
In5

Me

MpClk

Clk

Out2
(to PDN)

1 → 1
1 → 0

0 → 0
0 → 1

to other
PDN’s

to other
PUN’s

WARNING: Very sensitive to noise!


