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What is this book all about?
Introduction to digital integrated circuits.

CMOS devices and manufacturing technology. 
CMOS inverters and gates. Propagation delay, 
noise margins, and power dissipation. Sequential 
circuits. Arithmetic, interconnect, and memories. 
Programmable logic arrays. Design 
methodologies.

What will you learn?
Understanding, designing, and optimizing digital 
circuits with respect to different quality metrics: 
cost, speed, power dissipation, and reliability
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Digital Integrated Circuits
Introduction: Issues in digital design
The CMOS inverter
Combinational logic structures
Sequential logic gates
Design methodologies
Interconnect: R, L and C
Timing
Arithmetic building blocks
Memories and array structures
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Introduction

Why is designing 
digital ICs different 
today than it was 
before?
Will it change in 
future?
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The First Computer

The Babbage
Difference Engine
(1832)
25,000 parts
cost: £17,470
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ENIAC - The first electronic computer (1946)
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The Transistor Revolution

First transistor
Bell Labs, 1948
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The First Integrated Circuits 

Bipolar logic
1960’s

ECL 3-input Gate
Motorola 1966
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Intel 4004 Micro-Processor

1971
1000 transistors
1 MHz operation
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Intel Pentium (IV) microprocessor
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Moore’s Law

n 1965, Gordon Moore noted that the 
number of transistors on a chip doubled 
every 18 to 24 months. 

e made a prediction that  semiconductor 
technology will double its effectiveness 
every 18 months
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Moore’s Law
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Evolution in Complexity
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Transistor Counts
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Moore’s law in Microprocessors
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Die Size Growth
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Frequency
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Power Dissipation
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Power will be a major problem
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Power density
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Not Only Microprocessors

Digital Cellular Market
(Phones Shipped)

1996  1997 1998  1999  2000
Units 48M   86M  162M  260M  435M Analog 

Baseband

Digital Baseband
(DSP + MCU)

Power
Management

Small 
Signal RF

Power
RF

(data from Texas Instruments)

Cell
Phone
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Challenges in Digital Design

“Microscopic Problems”
• Ultra-high speed design
• Interconnect
• Noise, Crosstalk
• Reliability, Manufacturability
• Power Dissipation
• Clock distribution.

Everything Looks a Little Different

“Macroscopic Issues”
• Time-to-Market
• Millions of Gates
• High-Level Abstractions
• Reuse & IP: Portability
• Predictability
• etc.

…and There’s a Lot of Them!

∝ DSM ∝ 1/DSM

?
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Productivity Trends
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Why Scaling?
Technology shrinks by 0.7/generation
With every generation can integrate 2x more 
functions per chip; chip cost does not increase 
significantly
Cost of a function decreases by 2x
But …

How to design chips with more and more functions?
Design engineering population does not double every 
two years…

Hence, a need for more efficient design methods
Exploit different levels of abstraction
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Design Abstraction Levels
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Design Metrics

How to evaluate performance of a 
digital circuit (gate, block, …)?

Cost
Reliability
Scalability
Speed (delay, operating frequency) 
Power dissipation
Energy to perform a function
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Cost of Integrated Circuits

NRE (non-recurrent engineering) costs
design time and effort, mask generation
one-time cost factor

Recurrent costs
silicon processing, packaging, test
proportional to volume
proportional to chip area
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NRE Cost is Increasing
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Die Cost

Single die

Wafer

From http://www.amd.com

Going up to 12” (30cm)
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Cost per Transistor

0.0000001

0.000001

0.00001

0.0001

0.001

0.01

0.1
1

1982 1985 1988 1991 1994 1997 2000 2003 2006 2009 2012

cost: 
¢-per-transistor

Fabrication capital cost per transistor (Moore’s law)



EE141
31

© Digital Integrated Circuits2nd Introduction
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Defects
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
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Some Examples (1994)

$4179%402961.5$15000.803Pentium

$27213%482561.6$17000.703Super Sparc

$14919%532341.2$15000.703DEC Alpha

$7327%661961.0$13000.803HP PA 7100

$5328%1151211.3$17000.804Power PC 
601

$1254%181811.0$12000.803486 DX2

$471%360431.0$9000.902386DX

Die 
cost

YieldDies/
wafer

Area 
mm2

Def./ 
cm2

Wafer 
cost

Line 
width

Metal 
layers

Chip
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Reliability―
Noise in Digital Integrated Circuits

i(t)

Inductive coupling Capacitive coupling Power and ground
noise

v(t) VDD
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DC Operation
Voltage Transfer Characteristic

V(x)

V(y)

VOH

VOL

VM

VOHVOL

f
V(y)=V(x)

Switching Threshold

Nominal Voltage Levels

VOH = f(VOL)
VOL = f(VOH)
VM = f(VM)
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Mapping between analog and digital signals

V IL V IH V in

Slope = -1

Slope = -1

V OL

V OH

Vout

“ 0” VOL

VIL

VIH

VOH

Undefined
Region

“ 1”
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Definition of Noise Margins

Noise margin high

Noise margin low

VIH

VIL

Undefined
Region

"1"

"0"

VOH

VOL

NMH

NML

Gate Output Gate Input
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Noise Budget

Allocates gross noise margin to 
expected sources of noise
Sources: supply noise, cross talk, 
interference, offset
Differentiate between fixed and 
proportional noise sources
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Key Reliability Properties
Absolute noise margin values are deceptive

a floating node is more easily disturbed than a 
node driven by a low impedance (in terms of 
voltage)

Noise immunity is the more important metric –
the capability to suppress noise sources
Key metrics: Noise transfer functions, Output 

impedance of the driver and input impedance of the 
receiver; 



EE141
40

© Digital Integrated Circuits2nd Introduction

Regenerative Property
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Regenerative Property

A chain of inverters
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Fan-in and Fan-out

N

Fan-out N Fan-in M

M
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The Ideal Gate

Ri = ∞
Ro = 0
Fanout = ∞
NMH = NML = VDD/2g = ∞

V in

V out
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An Old-time Inverter
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Delay Definitions
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Ring Oscillator

v0 v1 v5

v1 v2v0 v3 v4 v5

T = 2 × tp × N
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A First-Order RC Network

vout

vin C

R

tp = ln (2) τ = 0.69 RC

Important model – matches delay of inverter
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Power Dissipation

Instantaneous power: 
p(t) = v(t)i(t) = Vsupplyi(t)

Peak power: 
Ppeak = Vsupplyipeak

Average power: 

( )∫ ∫
+ +

==
Tt

t
Tt

t supply
supply

ave dtti
T

V
dttp

T
P )(1
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Energy and Energy-Delay

Power-Delay Product (PDP) =

E =  Energy per operation = Pav × tp

Energy-Delay Product (EDP) =

quality metric of gate  = E × tp
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A First-Order RC Network

E0 1→ P t( )dt
0

T
∫ Vdd isupply t( )dt

0

T
∫ Vdd CLdVout

0

Vdd

∫ CL Vdd• 2= = = =

Ecap Pcap t( )dt
0

T
∫ Vouticap t( )dt

0

T
∫ CLVoutdVout

0

Vdd
∫

1
2
---C

L
Vdd•

2= = = =

vout

vin CL
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Summary
Digital integrated circuits have come a long 
way and still have quite some potential left for 
the coming decades
Some interesting challenges ahead

Getting a clear perspective on the challenges and 
potential solutions is the purpose of this book

Understanding the design metrics that govern 
digital design is crucial

Cost, reliability, speed, power and energy 
dissipation


