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The CMOS Inverter: A First Glance
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CMOS Inverter
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Two Inverters

Connect in Metal

Share power and ground
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CMOS Inverter
First-Order DC Analysis

VOL = 0
VOH = VDD

VM = f(Rn, Rp)

VDD VDD
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CMOS Inverter: Transient Response

tpHL = f(Ron.CL)
= 0.69 RonCL
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Voltage Transfer
Characteristic
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PMOS Load Lines
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CMOS Inverter Load Characteristics
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CMOS Inverter VTC
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Switching Threshold as a function 
of Transistor Ratio
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Determining VIH and VIL

VOH

VOL

Vin

Vout

VM

VIL VIH

A simplified approach
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Inverter Gain
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Gain as a function of VDD
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Simulated VTC
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Impact of Process Variations
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Propagation Delay
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CMOS Inverter Propagation Delay
Approach 1
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CMOS Inverter Propagation Delay
Approach 2
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CMOS Inverters
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Design for Performance

Keep capacitances small
Increase transistor sizes

watch out for self-loading!
Increase VDD (????)
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Delay as a function of VDD

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

V
DD

(V)

t p(n
or

m
al

iz
ed

)



© Digital Integrated Circuits2nd Inverter

2 4 6 8 10 12 14
2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8
x 10

-11

S

t p(s
ec

)

Device Sizing

(for fixed load)

Self-loading effect:
Intrinsic capacitances
dominate



© Digital Integrated Circuits2nd Inverter

1 1.5 2 2.5 3 3.5 4 4.5 5
3

3.5

4

4.5

5
x 10

-11

β

t p(s
ec

)

NMOS/PMOS ratio

tpLH tpHL

tp β = Wp/Wn



© Digital Integrated Circuits2nd Inverter

Impact of Rise Time on Delay
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Inverter Sizing
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Inverter Chain

CL

If CL is given:
- How many stages are needed to minimize the delay?
- How to size the inverters?

May need some additional constraints.

In Out
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Inverter Delay

• Minimum length devices, L=0.25µm
• Assume that for WP = 2WN =2W 

• same pull-up and pull-down currents
• approx. equal resistances RN = RP
• approx. equal rise tpLH and fall tpHL delays

• Analyze as an RC network
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Inverter with Load

Load (CL)

Delay

Assumptions: no load -> zero delay

CL

tp = k RWCL

RW

RW

Wunit = 1

k is a constant, equal to 0.69



© Digital Integrated Circuits2nd Inverter

Inverter with Load

Load

Delay

Cint CL

Delay = kRW(Cint + CL) = kRWCint + kRWCL = kRW Cint(1+ CL /Cint)
= Delay (Internal) + Delay (Load)

CN = Cunit

CP = 2Cunit

2W

W
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Delay Formula
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Cint = γCgin with γ ≈ 1
f = CL/Cgin - effective fanout
R = Runit/W ; Cint =WCunit
tp0 = 0.69RunitCunit
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Apply to Inverter Chain
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In Out
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Optimal Tapering for Given N

Delay equation has N - 1 unknowns, Cgin,2 – Cgin,N

Minimize the delay, find N - 1 partial derivatives

Result: Cgin,j+1/Cgin,j = Cgin,j/Cgin,j-1

Size of each stage is the geometric mean of two neighbors

- each stage has the same effective fanout (Cout/Cin)
- each stage has the same delay

1,1,, +−= jginjginjgin CCC
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Optimum Delay and Number of 
Stages

1,/ ginL
N CCFf ==

When each stage is sized by f and has same eff. fanout f:

N Ff =

( )γ/10
N

pp FNtt +=

Minimum path delay

Effective fanout of each stage:
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Example

CL= 8 C1

In Out

C1
1 f f2

283 ==f

CL/C1 has to be evenly distributed across N = 3 stages:
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Optimum Number of Stages

For a given load, CL and given input capacitance Cin
Find optimal sizing f
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Optimum Effective Fanout f
Optimum f for given process defined by γ

( )ff γ+= 1exp

fopt = 3.6
for γ=1
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Impact of Self-Loading on tp
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Normalized delay function of F
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Buffer Design
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Power Dissipation
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Where Does Power Go in CMOS?
• Dynamic Power Consumption

• Short Circuit Currents

• Leakage

Charging and Discharging Capacitors

Short Circuit Path between Supply Rails during Switching

Leaking diodes and transistors
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Dynamic Power Dissipation

Energy/transition = CL * Vdd
2

Power = Energy/transition * f = CL * Vdd
2 * f

Need to reduce CL, Vdd, and f to reduce power.

Vin Vout

CL

Vdd

Not a function of transistor sizes!
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Modification for Circuits with Reduced Swing

CL

Vdd

Vdd

Vdd -Vt

E0 1→ CL Vdd Vdd Vt–( )••=

Can exploit reduced swing to lower power
(e.g., reduced bit-line swing in memory)
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Adiabatic Charging

22

2



© Digital Integrated Circuits2nd Inverter

Adiabatic Charging
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Node Transition Activity and Power
Consider switching a CMOS gate for N clock cycles

EN CL Vdd• 2 n N( )•=

n(N): the number of 0->1 transition in N  clock cycles

EN  : the energy consumed for N clock cycles

Pavg N ∞→
lim

EN
N-------- fclk•= n N( )

N------------
N ∞→

lim 
  C•

L
Vdd•

2 fclk•=

α0 1→
n N( )

N------------
N ∞→

lim=

Pavg = α0 1→ C• L
Vdd• 2 fclk•
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Transistor Sizing for Minimum 
Energy

Goal: Minimize Energy of whole circuit
Design parameters: f and VDD

tp ≤ tpref of circuit with f=1 and VDD =Vref
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Transistor Sizing (2)
Performance Constraint (γ=1)

Energy for single Transition
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Short Circuit Currents
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How to keep Short-Circuit Currents Low?

Short circuit current goes to zero if tfall >> trise,
but can’t do this for cascade logic, so ...
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Minimizing Short-Circuit Power
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Leakage

Vout

Vdd

Sub-Threshold
Current

Drain Junction
Leakage

Sub-threshold current one of most compelling issues
in low-energy circuit design!
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Reverse-Biased Diode Leakage

N
p+ p+

Reverse Leakage Current

+

-Vdd

GATE

IDL = JS × A

JS = 10-100 pA/µm2  at 25 deg C for  0.25µm CMOS
JS doubles for every 9 deg C!
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Subthreshold Leakage Component



© Digital Integrated Circuits2nd Inverter

Static Power Consumption

Vin=5V

Vout

CL

Vd d

Istat

Pstat = P(In=1).Vdd . Istat

Wasted energy …
Should be avoided in almost all  cases,
but could help reducing energy in others (e.g. sense amps)
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Principles for Power Reduction
Prime choice: Reduce voltage!

Recent years have seen an acceleration in 
supply voltage reduction
Design at very low voltages still open 
question (0.6 … 0.9 V by 2010!)

Reduce switching activity
Reduce physical capacitance

Device Sizing: for F=20
– fopt(energy)=3.53, fopt(performance)=4.47
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Impact of
Technology 
Scaling
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Goals of Technology Scaling

Make things cheaper:
Want to sell more functions (transistors) 
per chip for the same money
Build same products cheaper, sell the 
same part for less money
Price of a transistor has to be reduced

But also want to be faster, smaller, 
lower power
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Technology Scaling

Goals of scaling the dimensions by 30%:
Reduce gate delay by 30% (increase operating 
frequency by 43%)
Double transistor density
Reduce energy per transition by 65% (50% power 
savings @ 43% increase in frequency

Die size used to increase by 14% per 
generation
Technology generation spans 2-3 years
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Technology Generations
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Technology Evolution (2000 data)

International Technology Roadmap for Semiconductors
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Technology Evolution (1999)
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ITRS Technology Roadmap 
Acceleration Continues
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Technology Scaling (1)
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Technology Scaling (2) 

Number of components per chip
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Technology Scaling (3)

Propagation Delay

tp decreases by 13%/year
50% every 5 years!
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Technology Scaling (4)

(a) Power dissipation vs. year.
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Technology Scaling Models 

• Full Scaling (Constant Electrical Field)

• Fixed Voltage Scaling

• General Scaling

ideal model — dimensions and voltage scale
together by the same factor S

most common model until recently —
only dimensions scale, voltages remain constant

most realistic for todays situation —
voltages and dimensions scale with different factors
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Scaling Relationships for Long Channel Devices
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Transistor Scaling
(velocity-saturated devices)
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µProcessor Scaling

P.Gelsinger: µProcessors for the New Millenium, ISSCC 2001
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µProcessor Power

P.Gelsinger: µProcessors for the New Millenium, ISSCC 2001
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µProcessor Performance

P.Gelsinger: µProcessors for the New Millenium, ISSCC 2001
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2010 Outlook

Performance 2X/16 months
1 TIP (terra instructions/s)
30 GHz clock

Size
No of transistors: 2 Billion
Die: 40*40 mm

Power
10kW!!
Leakage: 1/3 active Power

P.Gelsinger: µProcessors for the New Millenium, ISSCC 2001 



© Digital Integrated Circuits2nd Inverter

Some interesting questions

What will cause this model to break?
When will it break?
Will the model gradually slow down?

Power and power density
Leakage
Process Variation


